Course code	
Type and description	Elective Course
ECTS credit	1
Course name	Computational Heat and Mass Transfer
Course name in Polish	Komputerowa analiza transportu ciepła i wilgoci
Language of instruction	English
Course level	8 PRK
Course coordinator	Marcin Koniorczyk
Course instructors	Marcin Koniorczyk, Witold Grymin, Dalia Bednarska
Delivery methods and course duration	Lecture Tutorials Laboratory Project Seminar Other Total of teaching hours during semester
	Contact hours 0 0 0 15 0 0 15
	E-learning No No No No No
	Assessment criteria 1.0
	(weightage)
Course objective	Aims of the course is:
	 to extend knowledge in the neat and mass transfer, to learn numerical methods used to solve elliptic and parabolic PDF.
	 to learn numerical methods used for the Stefan problem.
Learning outcomes	After the course student:
	 knows the basic mechanisms of mass transport W4 knows the basic mechanisms of mass transport W4
	3. have the basic knowledge about porous materials, their microstructure, basic properties
	 4. knows how to formulate the weak form of governing equations W4
	5. will be able to apply the numerical methods to solve the uncoupled governing equations U4
	6. will be able to apply the numerical methods to solve the coupled heat and mass equations
	 will be able to solve the Stefan problem associated with the moving phase boundary U4
Assessment methods	Verification methods of learning outcomes:
	effects no. 1-8: by worksheet project.
	U4, K1 – project seminar presentation
	W4, U4 – written project
	The final grade is composed of: 75% - project
	25% - oral presentation of achieved solutions in project
Prerequisites	
Course content with	The porous materials – microstructure, properties
delivery methods	Macroscopic description of Transport Phenomena in Porous Media
	Some special cases
	Phase transition – description, kinetics, measurement
	Steran problem – moving boundary between phases
	Finite Element Method – introduction, application, error

Basic reference materials	1. J. Bear, Y. Bachmat, Introduction to Modelling of Transport Phenomena in Porous Media, Kluver Academic Press, 1991.
	2. R.W. Lewis, B.A. Schrefler, The Finite Method in the Static and Dynamic Deformation and
	 D.R.J. Owen, E. Hinton, Finite Element in Plasticity: Theory and Practice, Pineridge Press Ltd.
	1980.
Other reference materials	
Average student workload	10h
outside classroom	
Comments	
Last update	Brak informacji