Course code								
Type and description	PD – elective course from a different discipline							
ECTS credit	1							
Course name	Applied Dynamics							
Course name in Polish	Dynamika stosowana							
Language of instruction	English							
Course level	8 PRK							
Course coordinator	Przemysław Perlikowski							
Course instructors	Przemysław Perlikowski							
Delivery methods and course duration		Lecture	Tutorials	Laboratory	Project	Seminar	Other	Total of teaching hours during semester
	Contact hours	15	0	0	0	0	0	15
	E-learning	No	No	No	No	No	No	
	Assessment criteria (weightage)	100	0	0	0	0	0	
Course objective								
	1. Acquisition of knowledge concerning dynamics of mechanical and electro-mechanical systems.							
	2. Acquisition of knowledge on interpreting the behaviour of dynamical systems.							
	3. Acquisition of knowledge on the influence of system's parameters on its response.							
	4. Acquisition of knowledge of basic data acquisition of mechanical quantities.							
Learning outcomes	After the course, a PhD student will be able to:							
	1. understand and apply notions, theorems and methods of the theory of dynamical systems: effects W1, W3, U3, K2							
	2. understand and interpret the behaviour of applied dynamical systems: effects W1, W3, U3							
	3. understand a effects W1, W3,	nd apply sta U3	ability measu	ires to ensure	stability an	d robustness	of dynami	cal systems:
Assessment methods	Effects W1, W3	 oral exam 	ination					
	effects U3, K2 -	presentatio	n					
	The final evaluation is based on:							
	Exam - 50%							
	Presentation - 5	0%						

Prerequisites	The contents of the master degree course on the differential and integral calculus				
Course content with	Lecture:				
delivery methods	1.) Introduction to mechanical systems				
	2.) Introduction to electro-mechanical systems				
	3.) Interpretation of linear system behaviour				
	4.) Nonlinearities in modelling of dynamical systems				
	5.) Stability measures in dynamical systems				
	6.) Influence of bifurcations on the stability and robustness of dynamical systems				
	Presentation topics should focus on mathematical modelling of applied dynamical systems and the interpretation of numerical solutions.				
Basic reference materials	 Balachandran, Balakumar, and Edward B. Magrab. Vibrations. Cambridge University Press, 2018. 				
	2.) Den Hartog, Jacob Pieter. Mechanical vibrations. Courier Corporation, 1985.				
	 Seydel, Rüdiger. Practical bifurcation and stability analysis. Vol. 5. Springer Science & Business Media, 2009. 				
Other reference materials					
Average student workload	35 h				
outside classroom					
Comments					
Last update	28.04.2023				