Course code								
Type and description	EC							
ECTS credit	1							
Course name	Advanced CFD project							
Course name in Polish	Zaawansowany projekt CFD							
Language of instruction	English							
Course level	8 PRK							
Course coordinator	dr hab. inż. Krzysztof Sobczak							
Course instructors	dr hab. inż. Krzysztof Sobczak							
Delivery methods and course duration		Lecture	Tutorials	Laboratory	Project	Seminar	Other	Total of teaching hours during semester
	Contact hours	0	0	0	15	0	0	15
	E-learning	No	No	No	No	No	No	
	Assessment criteria (weightage)	0,00	0,00	0,00	1,0	0,00	0,00	
Course objective	1. The aim of the course is to enable PhD students to acquire comprehensive knowledge in the field of computational fluid dynamics.							
Learning outcomes	After completing the course a PhD student can:							
	1. select equations of fluid dynamics for complex flow problems – outcome W4, U4							
	2. characterize methods of turbulent flow simulations and select them for various flows – outcome W4, U4							
	3. characterize the finite volume method and determine the discretization uncertainty – outcomes W4, U4							
	4. build numerical models, solve, validate and verify as well as interpret and analyze simulation results for complex fluid flow problems – outcomes W4, U4, K1							
Assessment methods	Effects W4, U4, final presentation	K1 - project	t execution, p ject.	participation in	discussion	s during mee	tings with th	ne instructor,
	The final grade consists of: design execution - 50%; discussion - 25%; final presentation of the project - 25%.							
	The PhD student passes the course provided that he/she passes 60% threshold, while for each assessment method the PhD student has to achieve at least 50% of its score.							
Prerequisites	Knowledge of fluid dynamics to characterize phenomena and conduct a basic analysis of the results of internal and external fluid flow problems.							
	Ability to use CA	AD software	to prepare c	omplex geom	etric models	S.		

	Ability to use CFD software available at the university to define, solve and present results of simple					
	flow problems.					
Course content with	PROJECT					
delivery methods						
	1. Definition and analysis of complex fluid flow problems. Selection of fluid dynamics equations.					
	2 Preparation and simulations of complex fluid flow problems: preparation of geometry, me					
	generation, task definition, simulations.					
	3. Verification and validation of simulation results. The mesh independence analysis.					
	4. Presentation and analysis of simulation results.					
Basic reference materials	1. Charles Hirsch, "Numerical Computations of Internal & External Flows", Butterworth-Heinemann,					
	2007.					
	0.0 in the William of the LECTURE in the Excision and Origin Fich." Order and 0010					
	2. Sreenivas Jayanti, "Computational Fluid Dynamics for Engineers and Scientists, Springer, 2018.					
	3. Bengt Andersson, et. al., "Computational Fluid Dynamics for Engineers", Cambridge University					
	Press, 2012.					
	1 Lecturer's materials					
	4. Lecturer's materials.					
Other reference materials	1. David C. Wilcox, "Turbulence Modeling for CFD", DWC Industries Inc., 2000.					
	2. ANSYS Help, Release 19.2, ANSYS, Inc., Canonsburg, PA, USA, 2018.					
	3 https://www.cfd_opline.com/					
	5. https://www.cid-oninie.com/					
Average student workload	10 h					
outside classroom						
Comments	proposed semester: summer					
Lactundata	17 March 2023					
Lasi upuale						