Course code								
Type and description	Background Course							
ECTS credit	2							
Course name	Mathematical modelling I							
Course name in Polish	Matematyczne modelowanie I							
Language of instruction	English							
Course level	8 PRK							
Course coordinator	Przemysław Perlikowski							
Course instructors	Przemysław Perlikowski, Radosław Mania, Grzegorz Kudra							
Delivery methods and course duration		Lecture	Tutorials	Laboratory	Project	Seminar	Other	Total of teaching hours during semester
	Contact hours	15	0	0	0	0	0	15
	E-learning	No	No	No	No	No	No	
	Assessment criteria (weightage)	100,00					0,00	
Course objective	1. To enable students to acquire knowledge in the field of mathematical methods of							
	vibration analysis of mechanical systems							
	2. Theoretical formulations (stability problems, variational formulations, bifurcations)							
	in applied mechanics with regard to mechanical systems.							
	3. Providing a good foundation for the development of solutions to a selected class							
	or problems in the mechanics of solids (materials).							
	4. To develop an understanding of the governing material models (composite							
Learning outcomes	After the course, a PhD student will be able to:							
	1. understand and apply notions, theorems and methods of the theory of dynamical systems: effects $W1$ 113 K2:							
	2. understand and apply stability measures to ensure stability and robustness of dynamical systems: effects W1, K1, K2							
	3. apply governing models for chosen materials and structures - W1, K1							
	4. define material properties for engineering structures and calculate strains and stresses for a given set of applied loads - U3, K1							
	5. asses load carrying capacity of specific members in the scope of strength and failure criteria – W4, U3							
Assessment methods	Effects W1, W4, U3, K1, K2 – writing and oral examination							
	The final evaluation is based on: Exam - 100%							

Prerequisites	The contents of the master degree course on the differential and integral calculus,					
	calculus, dynamics of machines and strength of materials.					
Course content with	Lecture:					
delivery methods	1. Nonlinear vibrations of mechanical systems with geometric and physical non-					
-	linearities (smooth systems),					
	2. Parametric vibrations,					
	3. Dynamics of systems with discontiuties,					
	4. Strength hypotheses and criteria of failure.					
	5. Stress tensor, strain tensor, invariants,					
	6. Analysis of the state of stress and deformation of isotropic and orthotropic					
	materials and structures.					
Basic reference materials	1. Balachandran, Balakumar, and Edward B. Magrab. Vibrations. Cambridge					
	University Press, 2018.					
	2. Den Hartog, Jacob Pieter. Mechanical vibrations. Courier Corporation, 1985.					
	Fung Y.C., Foundations of Solid Mechanics, Prentice-Hall, 1965,					
	4. Gibson R. F., Principles of Composite Material Mechanics. Boca Raton: CRC					
	Press, 2007.					
	5. D.W.A. Rees, Mechanics of Solids and Structures, Imperial College Press,					
	2000.					
	6. J.N. Reddy, Mechanics Of Laminated Composite Plates and Shells, Theory					
	and Analysis, CRC PRESS, 2004.					
	7. Sadd M.H., Elasticity Theory, Applications, and Numerics, Elsevier. 2014.					
	8. Awrejcewicz J.: Classical Mechanics. Dynamics. Springer, 2012.					
Other reference materials	Scientific papers					
Average student workload	35 h					
outside classroom						
Comments						
Last update						