

name of the unit: RESEARCH GROUP OF SOLUTION PHYSICAL CHEMISTRY		symbol: I-34 http://www.mitr.p.lodz.pl
head of the unit:		contact person:
Professor Dorota Swiatla-Wojcik	Prof. Dorota Swiatla-Wojcik, PhD, DSc	Dorota Swiatla-Wojcik Phone: +48-42-631-31-09 <u>dorota.swiatla-</u> <u>wojcik@p.lodz.pl</u>
scope of activities: Computer simulation and pulse-radiolysis measurement based research addressing the energy deposition and impact of ionizing radiation on aqueous solutions, mechanistic understanding of high-temperature water radiolysis, solvent effects on properties and reactions of transient radical species, analysis of hydrogen bonding interaction, ion solvation in binary solvents.		$H_{3}O^{+} HO_{2} O_{2} e^{i} a_{3}$ $H_{2} H^{+} H_{2}O_{2} OH^{+} a_{3}$
 Present and future activities: Molecular dynamics simulation based study of hydrogen bonding and solvent effects in aqueous systems at ambient and supercritical conditions. Kinetic studies of transient radical species in binary aqueous solutions. Mechanistic understanding of high-temperature water radiolysis. Interdisciplinary basic research supporting the nuclear energy applications, including: numerical simulation of LWR coolant chemistry, analysis of hydrogen generation, development of methods for controlling oxidising environment. 		θ θ θ 0 0 10 15 0 0 0 0 0 10 15 0
Selected representative publications (20 D. Swiatla-Wojcik, A Numerical Environment in Water-Cooled N A. Lewandowska-Andralojc, G. Photoinduced Electron Transfer Hydrophobic Solutes. J. Phys. C D. Swiatla-Wojcik, J. Szala-Bilni Hydroxyl Radical – MD Simulat	114-2022): Simulation of Radiation Chemistry for Contr Nuclear Power Reactors, Appl. Sci. 12 (2022) 9 L. Hug, B. Marciniak, G. Horner, D. Swiatla-V in Acetonitrile-Water Binary Solvent. Micros hem. B 124 (2020) 5654. k, High Temperature Aqueous Solvent Effect tion Study of Spectral Shifts and Hydrogen Bo	olling the Oxidising 47. Vojcik, Water-Triggered tructure-Tuned Reactivity of on Stretching Vibrations of the ond Statistics. J. Supercrit.

The portfolio of research groups was created as part of the Programme "STER" - Internationalisation of doctoral schools" as part of the realization of the project "Curriculum for advanced doctoral education & taining – CADET Academy of Lodz University of Technology".

D. Swiatla-Wojcik, J. Szala-Bilnik, High Temperature Aqueous Solvent Effect on Translational and Hydrogen Bond Dynamics of the Hydroxyl Radical – MD Simulation Study. J. Supercrit. Fluids 145 (2019) 103.

L. Kazmierczak, M. Wolszczak, D. Swiatla-Wojcik, Ionic-Equilibrium-Based Mechanism of OH Conversion to Dichloride Radical Anion in Aqueous Acidic Solutions by Kinetic and Theoretical Studies. J. Phys. Chem. B 123 (2019) 528.

L. Kazmierczak, D. Swiatla-Wojcik, M. Wolszczak, Rate of Reaction of the Hydrogen Atom with Nitrous Oxide RSC Advances. 7 (2017) 8800.

D. Swiatla-Wojcik, Water-Structure Based Mechanistic View on the Bimolecular Decay of the Hydrated Electron, Chem. Phys. Lett. 641 (2015) 51.

D. Swiatla-Wojcik, A. Mozumder, Assessment of Hydrogen Bonding Effect on Ionization of Water from Ambient to Supercritical Region - MD Simulation Approach Radiat. Phys. Chem. 97 (2014) 113.

Keywords:

Solvent effects, hydrogen bonding, binary solvents, high-temperature water radiolysis, molecular simulation, kinetic simulation, reaction kinetics, supercritical water

List of internship proposal in this research team:

Kinetic simulation of complex chemical systems. A traineeship is related to the computational chemical kinetics and concerns numerical simulation and kinetic analysis of multi-reactant systems.